List

Analytic Hierarchy Process (AHP)

Analytic Hierarchy Process (AHP) is commonly used to calculate weights based on expert evaluations. SPSSAU provides two calculation methods: Sum Product Method and Square Root Method, with the former set as the default. This function is located in SPSSAU -> Comprehensive Evaluation -> Analytic Hierarchy Process (AHP).

SPSSAU Operations

SPSSAU offers two ways to enter data: enter data directly and paste data (judgment matrix). The figure above illustrates the data entry process. Researchers can edit indicator names and the values in the white cells. Since the judgment matrix is a 'lower triangular' symmetric matrix, any changes in the 'white'-background cells will automatically update the corresponding 'blue'-background cells.

The figure above demonstrates the paste data process.

SPSSAU Data Format

As shown in the figure above, the data format of AHP (judgment matrix) is unique. Researchers can edit indicator names and values in the white cells. Since the judgment matrix is a 'lower triangular' symmetric matrix, any changes in the 'white'-background cells will automatically update the corresponding 'blue'-background cells. Alternatively, researchers can paste the judgment matrix directly for analysis.

Sum Product Method

The calculation steps and formulas are as follows:

1.Construct the Judgment Matrix

Experts compare each evaluation metric in pairs, forming an n * n judgment matrix A:

A=[1a12a1n1a121a2n1a1n1a2n1]

aij represents the importance rating of i relative to j.

2.Calculate the Weight Vector

(1)Normalize each column:

aij=aiji=1naij

(2)Calculate the average of each row as the weight:

wi=1nj=1naij

3.Consistency Test

(1)Calculate the Consistency Index (CI)

λmax=(Aw)inwi

A is the judgment matrix. w is the weight vector. n is the matrix order.

CI=λmaxnn1

λmax is the maximum eigenvalue of the judgment matrix.

(2)Calculate the Consistency Ratio (CR)

Calculate RI, as shown in the table below.

RI Table
n Order 3 4 5 6 7 8 9
RI 0.52 0.89 1.12 1.26 1.36 1.41 1.46
n Order 10 11 12 13 14 15 16
RI 1.49 1.52 1.54 1.56 1.58 1.59 1.5943
n Order 17 18 19 20 21 22 23
RI 1.6064 1.6133 1.6207 1.6292 1.6358 1.6403 1.6462
n Order 24 25 26 27 28 29 30
RI 1.6497 1.6556 1.6587 1.6631 1.667 1.6693 1.6724
n Order 31 32 33 34 35 36 37
RI 1.6755 1.6773 1.68 1.6828 1.6837 1.6864 1.6883
n Order 38 39 40 41 42 43 44
RI 1.6903 1.6921 1.6929 1.6947 1.6958 1.6985 1.6991
n Order 45 46 47 48 49 50 51
RI 1.7006 1.7015 1.7023 1.7045 1.7056 1.7065 1.7066
n Order 52 53 54 55 56 57 58
RI 1.7071 1.709 1.71 1.7109 1.7113 1.7123 1.7127

Calculate CR: CR = CIRI

When CR < 0.1, the consistency is considered acceptable.

Square Root Method

1.Judgment Matrix

Experts compare each evaluation metric in pairs, forming an n * n judgment matrix A:

A=[1a12a13a1n1a121a23a2n1a131a231a3n1a1n1a2n1a3n1]

aij represents the importance rating of i relative to j.

2.Weight Vector

The weight vector W is obtained by computing the eigenvalues and eigenvectors of the judgment matrix. The eigenvector can be derived using the following formula:

AW = λmaxW

λmax is the maximum eigenvalue of matrix A.

3.Consistency Test

Calculate CI: CI = λmaxnn1

Calculate RI, as shown in the table below.

RI Table
n Order 3 4 5 6 7 8 9
RI 0.52 0.89 1.12 1.26 1.36 1.41 1.46
n Order 10 11 12 13 14 15 16
RI 1.49 1.52 1.54 1.56 1.58 1.59 1.5943
n Order 17 18 19 20 21 22 23
RI 1.6064 1.6133 1.6207 1.6292 1.6358 1.6403 1.6462
n Order 24 25 26 27 28 29 30
RI 1.6497 1.6556 1.6587 1.6631 1.667 1.6693 1.6724
n Order 31 32 33 34 35 36 37
RI 1.6755 1.6773 1.68 1.6828 1.6837 1.6864 1.6883
n Order 38 39 40 41 42 43 44
RI 1.6903 1.6921 1.6929 1.6947 1.6958 1.6985 1.6991
n Order 45 46 47 48 49 50 51
RI 1.7006 1.7015 1.7023 1.7045 1.7056 1.7065 1.7066
n Order 52 53 54 55 56 57 58
RI 1.7071 1.709 1.71 1.7109 1.7113 1.7123 1.7127

Calculate CR: CR = CIRI

When CR < 0.1, the consistency is considered acceptable.

References

【1】The SPSSAU project (2024). SPSSAU. (Version 24.0) [Online Application Software]. Retrieved from https://www.spssau.com.

【2】周俊,马世澎. SPSSAU科研数据分析方法与应用.第1版[M]. 电子工业出版社,2024.

【3】洪志国, 李焱, 范植华, et al. Caculation on High-ranked R I of Analytic Hierarchy Process%层次分析法中高Order平均随机一致性指标(RI)的计算[J]. 计算机工程与应用, 038(12):45-47,150.

【4】谭跃进.定量分析方法[M].北京:中国人民大学出版社. 2012.